Device Engineering Incorporated

385 East Alamo Drive Chandler, AZ 85225 Phone: (480) 303-0822 Fax: (480) 303-0824 E-mail: admin@deiaz.com

Features

- Reduced part count
- True RMS Conversion
- Small foot print (8L-SOIC-NB)
- Wiring harness programmable
- Reduces multiple bus interfaces
- Stable over temperature
- DO 160C/D Category A3 Lightning Protection
- Works with 5VAC, 5VDC, 14VDC and 28VDC busses

General Description:

The DEI 1030 is designed to improve lighting bus tracking from unit to unit. Bus voltage is converted to a 0-5VDC signal level output that can be used to control analog drive of incandescent bulbs, or input to a microprocessor for pulse-width modulation. The need for different bus interface devices for each bus voltage is eliminated.

Bus voltage is selected via two open/ground discrete inputs permitting automatic unit adaptation to the system bus voltage. Lighting bus, common, and gain selection inputs are protected against lightning surges to DO-160C/D category A3 (waveforms 3, 4, and 5). See figures 5, 6, and 7.

DEI 1030

Lighting Bus Mapping

Circuit

© 2003 Device Engineering Inc.

Table 1: Pin Definitions						
PIN #	NAME	SYMBOL	DEFINITION			
1	Gain Select 0	GN0	Lightning protected* gain select input			
2	Gain Select 1	GN1	Lightning protected* gain select input			
3	Capacitor	CAP	Capacitor connection to V_{DD} for 5VRMS to DC conversion.			
4	Ground	GND	Circuit ground reference			
5	Output	OUT	Circuit output to lamp driver.			
6	Common	COM	Lightning protected* reference input from lighting bus.			
7	Bus Input	BUS	Lightning protected* circuit input from lighting bus.			
8	Supply Voltage	V _{DD}	Circuit input voltage.			
*Protected from lightning surges to DO160C/D category A3. See figures 5, 6, and 7.						

The DEI 1030 input stage is a differential to single-ended converter with variable gain. The GN0 and GN1 inputs control the gain of this circuit. Following the differential input stage is an RMS-to-DC converter, which provides a DC output voltage proportional to the RMS value of its input. The circuit is intended to interface various lighting systems to a 0 ~ 5 volt internal standard.

Three gain settings are provided. If both gain pins are grounded (GN0 = GN1 = 0), the circuit will output a DC voltage that is equal to the RMS value of the input. Because of the RMS conversion, either polarity of input DC voltage results in the same output. A true sine waveform will give a DC output that is equal to the RMS value of the input. A distorted sine, or any other waveform (at low enough frequency) will give a DC output voltage that is approximately equal to the RMS value of the input. Thus in this gain mode, either a zero-to-5 V DC or 400Hz sinusoidal input will result in a zero-to-5 V DC output.

Figure 3: Test Circuit

A filter capacitor is used in the RMS-to-DC conversion. A value of at least 0.22 μ F is recommended. A larger value will reduce the ripple (at 2x the input frequency) at the output.

Function Table						
GN1	GN0	INPUT FORMAT	DC GAIN			
0 (Gnd)	0 (Gnd)	5V	1.0			
0 (Gnd)	1 (Open)	14V	0.357			
1 (Open)	0 (Gnd)	19V (not used)	0.263			
1 (Open)	1 (Open)	28V	0.179			

Table 2: Absolute Maximum Ratings						
PARAMETER	SYMBOL	RATING	UNITS			
Supply Voltage	V _{DD}	16.5	V			
Input Voltage (Pins BUS, COM, GN0, GN1)	V _{IN}	V _{SS} - 10 to V _{DD} + 40	V			
Lightning Protection (BUS, COM, GN0, GN1; DO160C/D, Waveforms 3, 4*, and 5*; level 3)	V _{LTG}	+/- 600 +/- 300 *	V			
Output Current (Pin OUT)	I _{OUT}	50	mA			
Lead Soldering Temperature (10 sec duration)	T _{SLD}	280	°C			
Storage Temperature	T _{STG}	-55 to +125	°C			

The DEI1030 contains circuitry to protect inputs against damage due to high voltage static discharge. Normal precautions must be used in handling these devices.

Table 3: Operating Range						
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	
Supply Voltage	V _{DD}	10.8	12	13.2	V	
Supply Current(V_{DD} = 13.2V, $V_{BUS} - V_{COM}$ = 0)	I _{DD}			9	mA	
Operating Temperature	To	-55		85	°C	

	Т	able 4: Electrical Characteristics	i			
Unless noted, operating co	onnections: V	$V_{\text{DD}} = 12\text{V} \pm 10\%, \text{V}_{\text{COM}} = 0\text{V}, \text{T} = -55$	°C ~ +85°(C, GN0 =	"low",GN1	= "low"
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		OUTPUT CHARACTERISTICS				
DC Output voltage	V ₀₁	V _{BUS} - V _{COM} = 0 *GN0 = "low", GN1 = "low"	0		50	mV
DC Output voltage	V _{O2}	V _{BUS} - V _{COM} = 2.5 V DC *GN0 = "low", GN1 = "low"	2.4		2.6	V
DC Output voltage	V_{O3}	V _{BUS} - V _{COM} = 5.0 V DC *GN0 = "low", GN1 = "low"	4.8		5.2	V
DC Output voltage	V _{O4}	V _{BUS} - V _{COM} = 5.0 VRMS, 400 Hz AC *GN0 = "low", GN1 = "low"	4.8		5.2	V
DC Output voltage	V_{05}	V _{BUS} - V _{COM} = 14.0 V DC *GN0 = "high", GN1 = "low"	4.8		5.2	V
DC Output voltage	V_{O6}	V _{BUS} - V _{COM} = 28.0 V DC *GN0 = "high", GN1 = "high"	4.8		5.2	V
		INPUT CHARACTERISTICS				
Signal input resistance	R	Single-ended input resistance: BUS or COM (see Note 1.)	30		80	kΩ
Common-mode input range	V _{сом}	Voltage on COM pin for less than 1% change in output volt- age (see Note 1.)	-2		2	V
	GAIN C	ONTROL INPUT CHARACTERI	STICS			
Gain select low level voltage	V _{IL}	GN0, GN1 input voltage to guarantee "low" input			3.0	V
Gain select high level volt- age	V _{IH}	GN0, GN1 input voltage to guarantee "high" input	3.5			V
Gain select low level resistance (GND)	R⊾	GN0, GN1 input resistor to ground to guarantee "low" in- put			100	Ω
Gain select high level resistance (OPEN)	R _{IH}	GN0, GN1 input resistor to ground to guarantee "high" input	100k			Ω
Gain select source current	I _G	Input voltage = 0			-100	μA
*See <i>"Gain Control Input C</i> Notes: 1. Guaranteed by design	haracteristic	cs" for definitions of GN0 and Gt roduction tested.	N1 charac	cteristics.		

